Topic:Sign Language Translation
What is Sign Language Translation? Sign language translation is the process of converting sign language gestures into spoken or written language.
Papers and Code
Feb 04, 2025
Abstract:Sign Language Translation (SLT) systems support hearing-impaired people communication by finding equivalences between signed and spoken languages. This task is however challenging due to multiple sign variations, complexity in language and inherent richness of expressions. Computational approaches have evidenced capabilities to support SLT. Nonetheless, these approaches remain limited to cover gestures variability and support long sequence translations. This paper introduces a Transformer-based architecture that encodes spatio-temporal motion gestures, preserving both local and long-range spatial information through the use of multiple convolutional and attention mechanisms. The proposed approach was validated on the Colombian Sign Language Translation Dataset (CoL-SLTD) outperforming baseline approaches, and achieving a BLEU4 of 46.84%. Additionally, the proposed approach was validated on the RWTH-PHOENIX-Weather-2014T (PHOENIX14T), achieving a BLEU4 score of 30.77%, demonstrating its robustness and effectiveness in handling real-world variations
Via
Jan 25, 2025
Abstract:Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose \modelname, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, \modelname unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that \modelname achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at \url{github.com/ZechengLi19/Uni-Sign}.
* Accepted by ICLR 2025
Via
Jan 16, 2025
Abstract:Our objective is to translate continuous sign language into spoken language text. Inspired by the way human interpreters rely on context for accurate translation, we incorporate additional contextual cues together with the signing video, into a new translation framework. Specifically, besides visual sign recognition features that encode the input video, we integrate complementary textual information from (i) captions describing the background show, (ii) translation of previous sentences, as well as (iii) pseudo-glosses transcribing the signing. These are automatically extracted and inputted along with the visual features to a pre-trained large language model (LLM), which we fine-tune to generate spoken language translations in text form. Through extensive ablation studies, we show the positive contribution of each input cue to the translation performance. We train and evaluate our approach on BOBSL -- the largest British Sign Language dataset currently available. We show that our contextual approach significantly enhances the quality of the translations compared to previously reported results on BOBSL, and also to state-of-the-art methods that we implement as baselines. Furthermore, we demonstrate the generality of our approach by applying it also to How2Sign, an American Sign Language dataset, and achieve competitive results.
Via
Jan 09, 2025
Abstract:The Greek Language Multimodal Lip Reading with Integrated Sign Language Accessibility (GLaM-Sign) [1] is a groundbreaking resource in accessibility and multimodal AI, designed to support Deaf and Hard-of-Hearing (DHH) individuals. Developed from the FEELIT project [2], it integrates high-resolution audio, video, textual transcriptions, and Greek Sign Language translations for applications like real-time sign language translation and enhanced subtitle synchronization. While its primary focus is on promoting inclusivity in the Greek tourism sector, its adaptability extends to education, healthcare, and public services. Future advancements will enhance word-level precision and scalability to additional languages, supported by advanced AI methodologies and collaborations with diverse stakeholders. This dataset underscores the transformative potential of multimodal resources in bridging communication gaps, fostering innovation, and setting a benchmark for ethical AI and inclusive technologies.
* 9 pages, 4 figures
Via
Jan 01, 2025
Abstract:Although sign language recognition aids non-hearing-impaired understanding, many hearing-impaired individuals still rely on sign language alone due to limited literacy, underscoring the need for advanced sign language production and translation (SLP and SLT) systems. In the field of sign language production, the lack of adequate models and datasets restricts practical applications. Existing models face challenges in production accuracy and pose control, making it difficult to provide fluent sign language expressions across diverse scenarios. Additionally, data resources are scarce, particularly high-quality datasets with complete sign vocabulary and pose annotations. To address these issues, we introduce CNText2Sign and CNSign, comprehensive datasets to benchmark SLP and SLT, respectively, with CNText2Sign covering gloss and landmark mappings for SLP, and CNSign providing extensive video-to-text data for SLT. To improve the accuracy and applicability of sign language systems, we propose the AuraLLM and SignMST-C models. AuraLLM, incorporating LoRA and RAG techniques, achieves a BLEU-4 score of 50.41 on the CNText2Sign dataset, enabling precise control over gesture semantics and motion. SignMST-C employs self-supervised rapid motion video pretraining, achieving a BLEU-4 score of 31.03/32.08 on the PHOENIX2014-T benchmark, setting a new state-of-the-art. These models establish robust baselines for the datasets released for their respective tasks.
Via
Dec 21, 2024
Abstract:The human body communicates through various meaningful gestures, with sign language using hands being a prominent example. Bangla Sign Language Translation (BSLT) aims to bridge communication gaps for the deaf and mute community. Our approach involves using Mediapipe Holistic to gather key points, LSTM architecture for data training, and Computer Vision for realtime sign language detection with an accuracy of 94%. Keywords=Recurrent Neural Network, LSTM, Computer Vision, Bangla font.
* Accepted in 2024 27th international Conference on Computer and
information Technology (ICCIT), Bangladesh
Via
Dec 24, 2024
Abstract:Existing Sign Language Learning applications focus on the demonstration of the sign in the hope that the student will copy a sign correctly. In these cases, only a teacher can confirm that the sign was completed correctly, by reviewing a video captured manually. Sign Language Translation is a widely explored field in visual recognition. This paper seeks to explore the algorithms that will allow for real-time, video sign translation, and grading of sign language accuracy for new sign language users. This required algorithms capable of recognizing and processing spatial and temporal features. The aim of this paper is to evaluate and identify the best neural network algorithm that can facilitate a sign language tuition system of this nature. Modern popular algorithms including CNN and 3DCNN are compared on a dataset not yet explored, Trinidad and Tobago Sign Language as well as an American Sign Language dataset. The 3DCNN algorithm was found to be the best performing neural network algorithm from these systems with 91% accuracy in the TTSL dataset and 83% accuracy in the ASL dataset.
* 10 pages
Via
Dec 21, 2024
Abstract:In the realm of Sign Language Translation (SLT), reliance on costly gloss-annotated datasets has posed a significant barrier. Recent advancements in gloss-free SLT methods have shown promise, yet they often largely lag behind gloss-based approaches in terms of translation accuracy. To narrow this performance gap, we introduce LLaVA-SLT, a pioneering Large Multimodal Model (LMM) framework designed to leverage the power of Large Language Models (LLMs) through effectively learned visual language embeddings. Our model is trained through a trilogy. First, we propose linguistic continued pretraining. We scale up the LLM and adapt it to the sign language domain using an extensive corpus dataset, effectively enhancing its textual linguistic knowledge about sign language. Then, we adopt visual contrastive pretraining to align the visual encoder with a large-scale pretrained text encoder. We propose hierarchical visual encoder that learns a robust word-level intermediate representation that is compatible with LLM token embeddings. Finally, we propose visual language tuning. We freeze pretrained models and employ a lightweight trainable MLP connector. It efficiently maps the pretrained visual language embeddings into the LLM token embedding space, enabling downstream SLT task. Our comprehensive experiments demonstrate that LLaVA-SLT outperforms the state-of-the-art methods. By using extra annotation-free data, it even closes to the gloss-based accuracy.
Via
Jan 01, 2025
Abstract:Translating human intent into robot commands is crucial for the future of service robots in an aging society. Existing Human-Robot Interaction (HRI) systems relying on gestures or verbal commands are impractical for the elderly due to difficulties with complex syntax or sign language. To address the challenge, this paper introduces a multi-modal interaction framework that combines voice and deictic posture information to create a more natural HRI system. The visual cues are first processed by the object detection model to gain a global understanding of the environment, and then bounding boxes are estimated based on depth information. By using a large language model (LLM) with voice-to-text commands and temporally aligned selected bounding boxes, robot action sequences can be generated, while key control syntax constraints are applied to avoid potential LLM hallucination issues. The system is evaluated on real-world tasks with varying levels of complexity using a Universal Robots UR3e manipulator. Our method demonstrates significantly better performance in HRI in terms of accuracy and robustness. To benefit the research community and the general public, we will make our code and design open-source.
* Submitted into RAM
Via
Dec 12, 2024
Abstract:Current sign language translation (SLT) approaches often rely on gloss-based supervision with Connectionist Temporal Classification (CTC), limiting their ability to handle non-monotonic alignments between sign language video and spoken text. In this work, we propose a novel method combining joint CTC/Attention and transfer learning. The joint CTC/Attention introduces hierarchical encoding and integrates CTC with the attention mechanism during decoding, effectively managing both monotonic and non-monotonic alignments. Meanwhile, transfer learning helps bridge the modality gap between vision and language in SLT. Experimental results on two widely adopted benchmarks, RWTH-PHOENIX-Weather 2014 T and CSL-Daily, show that our method achieves results comparable to state-of-the-art and outperforms the pure-attention baseline. Additionally, this work opens a new door for future research into gloss-free SLT using text-based CTC alignment.
Via